619 research outputs found

    Convergence of vector bundles with metrics of Sasaki-type

    Full text link
    If a sequence of Riemannian manifolds, XiX_i, converges in the pointed Gromov-Hausdorff sense to a limit space, XX_\infty, and if EiE_i are vector bundles over XiX_i endowed with metrics of Sasaki-type with a uniform upper bound on rank, then a subsequence of the EiE_i converges in the pointed Gromov-Hausdorff sense to a metric space, EE_\infty. The projection maps πi\pi_i converge to a limit submetry π\pi_\infty and the fibers converge to its fibers; the latter may no longer be vector spaces but are homeomorphic to Rk/G\R^k/G, where GG is a closed subgroup of O(k)O(k) ---called the {\em wane group}--- that depends on the basepoint and that is defined using the holonomy groups on the vector bundles. The norms μi=i\mu_i=\|\cdot\|_i converges to a map μ\mu_{\infty} compatible with the re-scaling in Rk/G\R^k/G and the R\R-action on EiE_i converges to an R\R-action on EE_{\infty} compatible with the limiting norm. In the special case when the sequence of vector bundles has a uniform lower bound on holonomy radius (as in a sequence of collapsing flat tori to a circle), the limit fibers are vector spaces. Under the opposite extreme, e.g. when a single compact nn-dimensional manifold is re-scaled to a point, the limit fiber is Rn/H\R^n/H where HH is the closure of the holonomy group of the compact manifold considered. An appropriate notion of parallelism is given to the limiting spaces by considering curves whose length is unchanged under the projection. The class of such curves is invariant under the R\R-action and each such curve preserves norms. The existence of parallel translation along rectifiable curves with arbitrary initial conditions is also exhibited. Uniqueness is not true in general, but a necessary condition is given in terms of the aforementioned wane groups GG.Comment: 44 pages, 1 figure, in V.2 added Theorem E and Section 4 on parallelism in the limit space

    The fundamental solution and Strichartz estimates for the Schr\"odinger equation on flat euclidean cones

    Full text link
    We study the Schr\"odinger equation on a flat euclidean cone R+×Sρ1\mathbb{R}_+ \times \mathbb{S}^1_\rho of cross-sectional radius ρ>0\rho > 0, developing asymptotics for the fundamental solution both in the regime near the cone point and at radial infinity. These asymptotic expansions remain uniform while approaching the intersection of the "geometric front", the part of the solution coming from formal application of the method of images, and the "diffractive front" emerging from the cone tip. As an application, we prove Strichartz estimates for the Schr\"odinger propagator on this class of cones.Comment: 21 pages, 4 figures. Minor typos corrected. To be published in Comm. Math. Phy

    Quantum scalar field in D-dimensional static black hole space-times

    Get PDF
    An Euclidean approach for investigating quantum aspects of a scalar field living on a class of D-dimensional static black hole space-times, including the extremal ones, is reviewed. The method makes use of a near horizon approximation of the metric and ζ\zeta-function formalism for evaluating the partition function and the expectation value of the field fluctuations . After a review of the non-extreme black hole case, the extreme one is considered in some details. In this case, there is no conical singularity, but the finite imaginary time compactification introduces a cusp singularity. It is found that the ζ\zeta-function regularized partition function can be defined, and the quantum fluctuations are finite on the horizon, as soon as the cusp singularity is absent, and the corresponding temperature is T=0.Comment: 9 pages, LaTe

    Deligne-Beilinson cohomology and abelian link invariants: torsion case

    Get PDF
    For the abelian Chern-Simons field theory, we consider the quantum functional integration over the Deligne-Beilinson cohomology classes and present an explicit path-integral non-perturbative computation of the Chern-Simons link invariants in SO(3)RP3SO(3)\simeq\mathbb{R}P^3, a toy example of 3-manifold with torsion

    Foliations and Chern-Heinz inequalities

    Full text link
    We extend the Chern-Heinz inequalities about mean curvature and scalar curvature of graphs of C2C^{2}-functions to leaves of transversally oriented codimension one C2C^{2}-foliations of Riemannian manifolds. That extends partially Salavessa's work on mean curvature of graphs and generalize results of Barbosa-Kenmotsu-Oshikiri \cite{barbosa-kenmotsu-Oshikiri} and Barbosa-Gomes-Silveira \cite{barbosa-gomes-silveira} about foliations of 3-dimensional Riemannian manifolds by constant mean curvature surfaces. These Chern-Heinz inequalities for foliations can be applied to prove Haymann-Makai-Osserman inequality (lower bounds of the fundamental tones of bounded open subsets ΩR2\Omega \subset \mathbb{R}^{2} in terms of its inradius) for embedded tubular neighborhoods of simple curves of Rn\mathbb{R}^{n}.Comment: This paper is an improvment of an earlier paper titled On Chern-Heinz Inequalities. 8 Pages, Late

    The ground state and the long-time evolution in the CMC Einstein flow

    Full text link
    Let (g,K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold M with non-positive Yamabe invariant (Y(M)). As noted by Fischer and Moncrief, the reduced volume V(k)=(-k/3)^{3}Vol_{g(k)}(M) is monotonically decreasing in the expanding direction and bounded below by V_{\inf}=(-1/6)Y(M))^{3/2}. Inspired by this fact we define the ground state of the manifold M as "the limit" of any sequence of CMC states {(g_{i},K_{i})} satisfying: i. k_{i}=-3, ii. V_{i} --> V_{inf}, iii. Q_{0}((g_{i},K_{i}))< L where Q_{0} is the Bel-Robinson energy and L is any arbitrary positive constant. We prove that (as a geometric state) the ground state is equivalent to the Thurston geometrization of M. Ground states classify naturally into three types. We provide examples for each class, including a new ground state (the Double Cusp) that we analyze in detail. Finally consider a long time and cosmologically normalized flow (\g,\K)(s)=((-k/3)^{2}g,(-k/3))K) where s=-ln(-k) is in [a,\infty). We prove that if E_{1}=E_{1}((\g,\K))< L (where E_{1}=Q_{0}+Q_{1}, is the sum of the zero and first order Bel-Robinson energies) the flow (\g,\K)(s) persistently geometrizes the three-manifold M and the geometrization is the ground state if V --> V_{inf}.Comment: 40 pages. This article is an improved version of the second part of the First Version of arXiv:0705.307

    Maximum solutions of normalized Ricci flows on 4-manifolds

    Full text link
    We consider maximum solution g(t)g(t), t[0,+)t\in [0, +\infty), to the normalized Ricci flow. Among other things, we prove that, if (M,ω)(M, \omega) is a smooth compact symplectic 4-manifold such that b2+(M)>1b_2^+(M)>1 and let g(t),t[0,)g(t),t\in[0,\infty), be a solution to (1.3) on MM whose Ricci curvature satisfies that Ric(g(t))3|\text{Ric}(g(t))|\leq 3 and additionally χ(M)=3τ(M)>0\chi(M)=3 \tau (M)>0, then there exists an mNm\in \mathbb{N}, and a sequence of points {xj,kM}\{x_{j,k}\in M\}, j=1,...,mj=1, ..., m, satisfying that, by passing to a subsequence, (M,g(tk+t),x1,k,...,xm,k)dGH(j=1mNj,g,x1,,...,,xm,),(M, g(t_{k}+t), x_{1,k},..., x_{m,k}) \stackrel{d_{GH}}\longrightarrow (\coprod_{j=1}^m N_j, g_{\infty}, x_{1,\infty}, ...,, x_{m,\infty}), t[0,)t\in [0, \infty), in the mm-pointed Gromov-Hausdorff sense for any sequence tkt_{k}\longrightarrow \infty, where (Nj,g)(N_{j}, g_{\infty}), j=1,...,mj=1,..., m, are complete complex hyperbolic orbifolds of complex dimension 2 with at most finitely many isolated orbifold points. Moreover, the convergence is CC^{\infty} in the non-singular part of 1mNj\coprod_1^m N_{j} and Volg0(M)=j=1mVolg(Nj)\text{Vol}_{g_{0}}(M)=\sum_{j=1}^{m}\text{Vol}_{g_{\infty}}(N_{j}), where χ(M)\chi(M) (resp. τ(M)\tau(M)) is the Euler characteristic (resp. signature) of MM.Comment: 23 page

    A compactness theorem for complete Ricci shrinkers

    Get PDF
    We prove precompactness in an orbifold Cheeger-Gromov sense of complete gradient Ricci shrinkers with a lower bound on their entropy and a local integral Riemann bound. We do not need any pointwise curvature assumptions, volume or diameter bounds. In dimension four, under a technical assumption, we can replace the local integral Riemann bound by an upper bound for the Euler characteristic. The proof relies on a Gauss-Bonnet with cutoff argument.Comment: 28 pages, final version, to appear in GAF

    On Breakdown Criteria for Nonvacuum Einstein Equations

    Full text link
    The recent "breakdown criterion" result of S. Klainerman and I. Rodnianski stated roughly that an Einstein-vacuum spacetime, given as a CMC foliation, can be further extended in time if the second fundamental form and the derivative of the lapse of the foliation are uniformly bounded. This theorem and its proof were extended to Einstein-scalar and Einstein-Maxwell spacetimes in the author's Ph.D. thesis. In this paper, we state the main results of the thesis, and we summarize and discuss their proofs. In particular, we will discuss the various issues resulting from nontrivial Ricci curvature and the coupling between the Einstein and the field equations.Comment: 62 pages This version: corrected minor typos, expanded Section 6 (geometry of null cones

    Heat kernels on curved cones

    Full text link
    A functorial derivation is presented of a heat-kernel expansion coefficient on a manifold with a singular fixed point set of codimension two. The existence of an extrinsic curvature term is pointed out.Comment: 4p.,sign errors corrected and a small addition,uses JyTeX,MUTP/94/0
    corecore